

Waterhouse: Enabling Secure E-mail
with Social Networking

Abstract
We present Waterhouse, a system for sending and
receiving cryptographically protected electronic mail
(“secure e-mail”). We show how an existing e-mail
interface can be modified to make exchanging secure
e-mail nearly effortless. Our system integrates with
social networking services (such as Facebook) to
automatically exchange cryptographic keys between
friends. When a user sends a message to a friend, our
system automatically encrypts the contents to thwart
eavesdroppers. When a user receives a message from a
friend, Waterhouse uses the recipient’s social network
to verify the sender’s identity. Our prototype shows
senders’ photos as an intuitive indicator of message
authenticity. We describe our planned user study and
conclude with directions for future work.

Keywords
Security, privacy, social computing, cryptography

ACM Classification Keywords
D4.6. Security and privacy protection: Cryptographic
controls. H5.2. User interfaces: Graphical user
interfaces (GUI). Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, MA, USA

ACM 978-1-60558-246-7/09/04.

Alex P. Lambert
Department of Computer Science

University of Illinois

Urbana, Illinois

alamber3@uiuc.edu

Stephen M. Bezek
Department of Computer Science

University of Illinois

Urbana, Illinois

sbezek2@uiuc.edu

Karrie G. Karahalios
Department of Computer Science

University of Illinois

Urbana, Illinois

kkarahal@cs.uiuc.edu

Introduction
Conventional electronic mail is not secure: it is easy to
forge a sender’s address, and eavesdropping on
messages is not difficult [6]. Cryptographically
protected electronic mail (“secure e-mail”) offers two
important advantages over unprotected e-mail [3].
First, the recipient can verify the sender’s identity with
a cryptographic signature; a valid signature proves that
the message was not forged. Second, the message
contents can be protected from eavesdroppers using
encryption. To exchange secure e-mail messages, the
sender and recipient must each have a cryptographic
“key pair” (consisting of a “public key” and a related,
secret “private key”). Furthermore, the sender must
know the recipient’s public key, and the recipient must
know the sender’s public key.

The underlying mathematical principles for
cryptographically protected communication were
published more than three decades ago [2]. Standards
for sending and receiving secure e-mail have existed
for over twenty years [8], and popular e-mail clients
include interoperable implementations of the standards
[9]. But critical usability issues prevent widespread use
of cryptographically protected e-mail [10].

Meanwhile, e-mail users have remained vulnerable. In
1998, an executive of a rare book listing service
allegedly “directed [his] employees to intercept and
copy all incoming communications to [his customers]
from Amazon.com.” Prosecutors alleged that the
company “intercepted thousands of messages” and that
employees “routinely read the e-mail messages sent to
[customers] in the hope of gaining a commercial
advantage.” [11]

In practice, two challenging problems prevent
widespread deployment of secure e-mail: secure e-mail
clients are not intuitive [12], and there is no
widespread, reliable method of locating others’ public
keys [5]. We present Waterhouse, a system that
addresses both issues by integrating with social
networking services such as Facebook.

Related work
“Why Johnny Can’t Encrypt” [12]
Whitten and Tygar’s 1999 usability evaluation of a
popular secure e-mail package (Pretty Good Privacy 5.0
[14] with Eudora) found significant problems with the
product’s user interface. The evaluators questioned the
product’s analogy between cryptographic keys and
physical keys and its metaphor for sender
authentication.

Their testing also exposed practical usability
challenges: of the twelve participants in their user
study, only a third successfully sent a secure e-mail
message in the 90-minute test period. A quarter
accidentally sent confidential information in a non-
secure message. The authors concluded that the
interface “[did] not come even reasonably close to
achieving our usability standard” and that it “does not
make [exchanging secure e-mail] manageable for
average computer users.”

Whitten and Tygar formalized five problems that
security technology designers must address; two are
especially relevant to our discussion. First, the
“unmotivated user” problem is straightforward: for
most users, security is not a primary goal. Second,
security technologies must provide understandable,

actionable feedback to the user to prevent dangerous
errors; this is the “feedback” problem.

“Johnny 2” [10]
In 2005, Garfinkel and Miller created and evaluated a
system based on key continuity management (KCM).
Their prototype, CoPilot, addressed the problem of
finding others’ public keys by automatically learning
senders’ keys from incoming secure messages. They
expanded Whitten and Tygar’s user study to test
subjects’ responses to forged messages from attackers.

Garfinkel and Miller’s interviews revealed that after
interacting with CoPilot for less than an hour, users
generally understood the benefits of secure e-mail.
They found that while the KCM approach generally
improved security, users had trouble responding
correctly to forged messages. Additionally, only a third
of the experimental subjects elected to use encryption
when sending confidential data; most sent the
information without protecting it from eavesdroppers.
Some participants expected the e-mail client to protect
them from mistakes: they said that if encryption were
important for their scenario, a system administrator
would have configured the e-mail client to send only
encrypted messages. These results suggest that future
systems should carefully consider forgery issues,
provide clear information about the security of outgoing
messages, and automatically send messages securely
whenever possible.

Waterhouse: three radical changes
Our system, Waterhouse, significantly reduces the
difficulty of exchanging secure e-mail. Waterhouse acts
as an extension to existing e-mail clients. Our system

incorporates three radical changes that distinguish it
from other secure e-mail solutions:

 Waterhouse automates security tasks. For outgoing
messages, Waterhouse automatically employs the
strongest security possible. For example, when sending
a message to another Waterhouse user, the message
contents are automatically encrypted to prevent
eavesdropping. The sender does not have to explicitly
choose to protect his message. Waterhouse requires
only minimal configuration, and it automatically
generates a cryptographic key pair when first installed.

 Waterhouse distributes public keys using social
networking services (such as Facebook). Before
exchanging secure e-mail, the sender and recipient
must know one another’s public key. Waterhouse
exploits social networking services to automatically
exchange these keys between friends. (Waterhouse
only exchanges keys with friends. We assume that if
two users are friends on a social networking service,
they have verified one another’s identity. An attack and
a potential solution are discussed in the future work
section.)

 Waterhouse integrates social network data into its
user interface. For example, when a user reads a
secure message, the sender’s photo appears in the
message window. In contrast, another popular system
displays opaque, non-intuitive information (including a
hexadecimal “key ID”) in this area [4].

A user scenario
The easiest way to understand Waterhouse is to
consider a typical, concrete use case: Maria and her
friend Don would like to communicate securely. Maria

Figure 1. Facebook friends who are Waterhouse users are
automatically added to Maria’s address book.

and Don are both casual Facebook users. Maria, who
already uses Waterhouse, asks Don to try Waterhouse.

First, Don obtains the Waterhouse software. (In our
current prototype, Waterhouse is integrated into an
existing open-source, web-based e-mail client.) Next,
Don links Waterhouse to his Facebook account. This
step allows our system to look up information about his
Facebook friends. In our prototype, Waterhouse only
accesses friends’ names, profile photos, e-mail
addresses, and public keys. At this point, Waterhouse
automatically generates a cryptographic key pair for
Don. It then publishes Don’s public key to the Facebook
service. Don’s public key is now available to his friends.
Don and Maria can now exchange secure e-mail.

Later, when Maria composes a message to Don, our
system retrieves a list of her Facebook friends.
Waterhouse users are automatically merged into
Maria’s address book; each friend’s entry includes his
profile picture and public key. (This aspect is similar to
Lieberman and Miller’s Facemail system [7].)

When Maria starts typing Don’s name, Don’s picture
appears with a lock icon, indicating that she can
securely communicate with him (Figure 1). Waterhouse
adds a green strip to the top of the message; the strip’s
text informs Maria that her message will be encrypted
and therefore protected from eavesdroppers (Figure 2).

Finally, when Don receives Maria’s message,
Waterhouse automatically decrypts the message and
checks Maria’s digital signature. If this process
succeeds, Waterhouse adds a green notification to the
e-mail window (Figure 3). This notification includes
Maria’s picture; we expect that users will quickly
associate the presence of a photo and green strip with
a secure message.

If the verification process fails or if the message from
Maria was not sent securely, Waterhouse instead adds
a warning that the message may have been forged. To
avoid displaying misleading warnings, our system
shows the forgery notification only when the purported
sender is capable of sending secure messages.

Figure 2. In our interface text, we avoid technical terms in
favor of meaningful, understandable descriptions. For example,
we replace the word “encrypted” with a description of the
benefit of encryption.

Future directions
We have created a complete, functional prototype,
including Facebook connectivity and strong
cryptography. We plan to begin user testing in early
2009 and publish our results in a later paper. We plan
to base our experiments on Garfinkel and Miller’s
protocols so we can compare our technique against
their KCM results.

Our work focuses on the key exchange and user
interface aspects of secure messaging. Many closely
related problems remain open. Because a security
system is only as strong as its weakest component,
successful attacks against other related systems could

compromise the security of a user’s messages. For
example, our system does not prevent a user from
divulging his Facebook account password at a phishing
site. Easy-to-use, phishing-resistant authentication
methods are not yet popular, but technologies like
InfoCard [1] appear promising. Our current prototype
also does not address the problem of key management;
it is up to the user to store his private key securely.
Our system is designed to work in tandem with
solutions to these problems.

Waterhouse assumes that if two users are friends on a
social networking service, they have verified one
another’s identity. If a malicious user wanted to attack

Figure 3. Waterhouse displays a secure message. The sender’s photo and name is displayed along with a notification that the message
was protected from eavesdroppers.

Maria by impersonating Don, he could create a
Facebook profile with Don’s name and photo and send a
friendship request to Maria. If Maria approved the
request, the malicious user could send secure
messages to Maria as Don. To address this problem,
Waterhouse could ignore the public key of any friend
with less than n friends in common with the recipient
(for some value of n). With this change, a friend is
trusted only when other friends vouch for him; this
intuition is similar to the “web of trust” ideal in the
Pretty Good Privacy package. [14]

Our system is subject to network effects; a user will
find Waterhouse compelling only if his friends are also
using it. Therefore, it may be difficult to convince the
first users to install Waterhouse. Including it with future
versions of existing popular e-mail clients could
overcome this problem. Yahoo recently released a
software development kit for its web-based e-mail
service [13]. We plan to investigate the feasibility of
porting Waterhouse to this new platform.

Acknowledgements
Eric Gilbert and Tony Bergstrom provided valuable
feedback. Simson Garfinkel and Robert Miller
generously released their study protocols and
documentation.

References
[1] Bertocci, V., Serack, G., Baker, C. Understanding
Windows CardSpace: an introduction to the concepts
and challenges of digital identities. Addison-Wesley
Professional, Upper Saddle River, NJ, USA, 2007.

[2] Diffie, W., Hellman, M.E. New directions in
cryptography. IEEE Trans. Inform. Theory, IEEE Press
(1976). 644-654.

[3] Dusse, S., et al. S/MIME version 2 message
specification (RFC 2311). The Internet Society (1998).

[4] Enigmail Project. Enigmail 0.95.6 screenshots.
http://enigmail.mozdev.org/documentation/
screenshots.php

[5] Gutmann, P. How to build a PKI that works. In
Proc. Third Annual PKI R&D Workshop, NTIS (2004).

[6] Klensin, J. Simple mail transfer protocol (RFC
2821). The Internet Society (2001).

[7] Lieberman, E., Miller, R.C. Facemail: showing faces
of recipients to prevent misdirected email. Proc. Usable
Privacy and Security 2007, ACM Press (2007), 122-131.

[8] Linn, J. Privacy enhancement for Internet electronic
mail (RFC 989). IAB Privacy Task Force (1987).

[9] Réseaux IP Européens Network Coordination
Centre. E-mail client testing for S/MIME compliance.
http://www.ripe.net/db/support/security/
mail_client_tests.html

[10] Simson, G.L., Miller, R.C. “Johnny 2:” a user test of
key continuity management with S/MIME and Outlook
Express. Proc. Usable Privacy and Security 2005, ACM
Press (2005), 13-24.

[11] U.S. Court of Appeals for the First Circuit. United
States of America v. Bradford C. Councilman, 418 F.3d
67.

[12] Whitten, A., Tygar, J.D. Why Johnny can’t encrypt:
a usability evaluation of PGP 5.0. Proc. USENIX Security
1999, USENIX Association (1999), 14.

[13] Yahoo. Yahoo! Mail Web Services.
http://developer.yahoo.com/mail/

[14] Zimmermann, P.R. The official PGP user’s guide.
MIT Press, Cambridge, MA, USA, 1995.

