
Information
retrieval with
elasticsearch
Alex Lambert (@alambert)
Co-founder & CTO
alex@spindle.com

About

Previously:
● Microsoft Cambridge
● Bing Social Search
● FAST

Now: Spindle
Using ES since June 2011
(Almost) all data in ES

"Hello
world"

Why this talk?

Config
reference

"Hello
world"

Why this talk?

Config
reference

Why this talk?

● To use elasticsearch effectively, you must
understand the concepts of information
retrieval
○ "Why can't I just do a regular expression search over my

document content?"
○ "Why can't I find the phrase 'to be or not to be'?"
○ "Why was this document returned in my search results?

It doesn't have the words from my query!"
○ "Why was this document scored higher than that

document?"

● Content based on Introduction to Information
Retrieval by Manning et al.

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

Databases, by question

● Relational databases
○ Adept at answering "What are the names of all

employees in the finance department earning over
$40,000 per year?"

○ Implementations include Oracle, MySQL
● Key-value stores

○ "What is user 123's profile image?"
○ Cassandra, Riak, Dynamo

● Graph databases
○ "Which friends of friends do Steve and Alex have in

common?"
○ Neo4j, FlockDB

Information retrieval engines

What is Google adept at answering?

Information retrieval (IR) is finding
documents of an unstructured nature that
satisfy an information need from within a
large collection. (Manning)

Implementations: Lucene (elasticsearch, Solr),
FAST ESP, Endeca, Sphinx...

Finding a place

Information
retrieval (IR) is
finding documents
of an unstructured
nature that satisfy
an information
need from within a
large collection.

Finding something
to do tonight

Information
retrieval (IR) is
finding documents
of an unstructured
nature that satisfy
an information
need from within a
large collection.

The IR perspective

Is Harvard a valid result for the query
"universities in Boston"?

Traditional: "the user knows precisely what he
wants and how that's represented; I must do
exactly what he says"

IR: "the user wants to find out about something
and has given me a hint about what it is; I must
be helpful"
The Simplest Query Language That Could Possibly Work, Proceedings of the 2nd INEX Workshop (2003)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2314
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2314

What makes IR engines different?

Information need: which of Shakespeare's plays mention
Brutus and Caesar but not Calpurnia?

Why ES over SQL? IR engines provide:
● Efficient access to huge collections: no table scans
● Flexible matching: "Romans" within 5 words of

"countrymen"
● Ranked retrieval: best matches first

MySQL query elasticsearch query

select name from plays where (text like '%
Brutus%') and (text like '%Caesar%') and
not (text like '%Calpurnia%')

{"bool": {"must": [{"text": {"text": "Brutus"}},
{"text": {"text": "Caesar"}}],"must_not": [
{"text": {"text": "Calpurnia"}}]}}

Efficient access to huge collections

Information need: which of Shakespeare's plays mention Brutus
and Caesar but not Calpurnia?
We can index the plays. Collect all terms (words, for now). For
each document, record whether it contains each possible term.
Query: Brutus AND Caesar AND NOT Calpurnia

110100... AND 110111... AND NOT 010000... = 100100...

The Boolean retrieval model

● A document is a set of terms (words, for now)
● Query: a Boolean expression of terms

○ Document d matches t iff term t is in d
○ Document d matches t1 AND t2 iff t1 and t2 are in d
○ Document d matches t1 OR t2 iff t1 or t2 are in d
○ Document d matches NOT t iff d does not contain t

● Match ≥ 2 of 3: (a AND b) OR (b AND c) OR (a AND c)
document query matched?

Friends, Romans,
countrymen.

Romans AND Americans no

The quick brown fox jumps
over the lazy dog

(quick AND brown) AND
(fox OR pig)

yes

Texas with a dollar sign (texas AND dollar) OR
(dollar AND sign) OR (texas
AND sign)

yes

Implemented in elasticsearch as filters (fast & cacheable!)

http://www.elasticsearch.org/guide/reference/query-dsl/

Efficient access to huge collections

● Matrix has documentCount * termCount entries, most 0
● Assign each document a numeric ID, and store a

postings list: for each term, store a list of documents
that contain the term

Lucene: IndexReader#terms(), IndexReader#termDocs(Term term)

How would we evaluate
"Brutus AND Caesar
AND NOT Calpurnia"?

"Why can't I just do a
regular expression
search over my
document content?"

(sorted by document ID)

(s
or

te
d

by
 te

rm
)

https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/index/IndexReader.html#terms()
https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/index/IndexReader.html#termDocs(org.apache.lucene.index.Term)

The story so far

Information retrieval (IR) is finding documents of an
unstructured nature that satisfy an information need
from within a large collection.

Users have information needs rendered as queries
The Boolean model provides simple, unranked matching
We can implement the Boolean model using a postings list

IR engines provide:
 √ Efficient access to large collections
● Flexible matching
● Ranked retrieval

Flexible matching

How did this match?

(We said terms are
words, and we're just
matching terms, but
this top result doesn't
share any words with
the query!)

Flexible matching

How did this match?

string terms (after analysis)

craigy's in maine <craigi> <main>

Craigie On Main <craigi> <main>

Goal: since we're just
matching terms, use
clever term choices to
fine-tune matching

Analysis: from strings to terms

(document) ...Friends, Romans,
countrymen, lend me your ears...input

tokens

terms

Friends Romans countrymen

me

tokenization

friend roman countryman

lend me your ear

linguistic processing &
normalization
(Lucene: token filters)

lend your ears

(query) roman countryman
lending an ear

roman countryman

roman countryman

lend ear

lending earan

match!

Tokenizing English text
Goal: break a string into tokens (so we can later filter those tokens to create terms)
Mr. O'Neill thinks that Hewlett-Packard's www.autonomy.com acqusition "didn't go
splendidly."

Whitespace tokenizer creates tokens from adjacent sequences of non-whitespace characters (try it)

Mr. O'Neill thinks that Hewlett-
Packard's

www.
autonomy.
com

acquisition "didn't

go splendidly."

Standard tokenizer uses a grammar that implements Unicode Text Segmentation and recognizes URLs (try it)

Mr O'Neill thinks that Hewlett Packard's www.
autonomy.
com

acquisition

didn't go splendidly

Letter tokenizer divides text at non-letters (creating maximal strings of adjacent letters) (try it)

Mr O Neill thinks that Hewlett Packard s

www autonomy com acqusition didn t go splendidly

http://www.elasticsearch.org/guide/reference/index-modules/analysis/whitespace-tokenizer.html
http://localhost:9200/_analyze?tokenizer=whitespace&pretty=true&text=Mr.%20O'Neill%20thinks%20that%20Hewlett-Packard's%20www.autonomy.com%20acqusition%20%22didn't%20go%20splendidly.%22
http://www.elasticsearch.org/guide/reference/index-modules/analysis/whitespace-tokenizer.html
http://www.elasticsearch.org/guide/reference/index-modules/analysis/standard-tokenizer.html
http://localhost:9200/_analyze?tokenizer=standard&pretty=true&text=Mr.%20O'Neill%20thinks%20that%20Hewlett-Packard's%20www.autonomy.com%20acqusition%20%22didn't%20go%20splendidly.%22
http://www.elasticsearch.org/guide/reference/index-modules/analysis/standard-tokenizer.html
http://www.elasticsearch.org/guide/reference/index-modules/analysis/letter-tokenizer.html
http://localhost:9200/_analyze?tokenizer=letter&pretty=true&text=Mr.%20O'Neill%20thinks%20that%20Hewlett-Packard's%20www.autonomy.com%20acqusition%20%22didn't%20go%20splendidly.%22
http://www.elasticsearch.org/guide/reference/index-modules/analysis/letter-tokenizer.html

Token filters: from tokens to terms

Is tokenization sufficient? Unlikely: consider
"iPhone 5", "IPhone 5", "Iphone 5", "iphone 5"

Goal: normalize tokens so that terms from
document match terms from query

input token after lowercase after English
possessive

after
whitespace
trimming

after trim,
lowercase,
posessive

< IBM's> < ibm's> < IBM> <IBM's> <ibm>

http://localhost:9200/_analyze?tokenizer=keyword&pretty=true&filters=lowercase&text=I.B.M.'s
http://localhost:9200/_analyze?tokenizer=keyword&pretty=true&filters=lowercase&text=I.B.M.'s

Token filters: stemming

● "bank holiday", "bank holidays", "banking holiday", and
"banking holidays" all refer to the same concept

● A query for any of those phases should match a
document with any of those phrases

● Stemming normalizes words by removing inflections

input tokens after Porter stemmer

<bank> <holiday> <bank> <holidai>

<banks> <holidays> <bank> <holidai>

<banking> <holiday> <bank> <holidai>

<banking> <holidays> <bank> <holidai>

"Why was this document returned in my
search results? It doesn't have the words
from my query!"

http://localhost:9200/_analyze?tokenizer=whitespace&filters=porter_stem&pretty=true&text=banking%20holiday
http://localhost:9200/_analyze?tokenizer=whitespace&filters=porter_stem&pretty=true&text=banking%20holiday

Token filters: omitting stopwords

● Every document contains "a", "an", "of", "the"
● Generally not useful to store stop words, so we omit

input tokens after stop word filter

<the> <library> <is> <closing> <at> <10> <library> <closing> <10>

<the> <iphone> <5> <will> <be>
<available> <at> <6> <in> <the>
<evening>

<iphone> <5> <available> <6> <evening>

<to> <be> <or> <not> <to> <be>

"Why can't I find the phrase 'to be or
not to be'?"

http://localhost:9200/_analyze?tokenizer=whitespace&filters=stop&pretty=true&text=the%20a%20an%20but%20is%20of
http://localhost:9200/_analyze?tokenizer=whitespace&filters=stop&pretty=true&text=the%20a%20an%20but%20is%20of

When all you have is a postings list,
everything looks like term matching

input tokens after phonetic filter (nysiis)

<Jeff> <Lupien> <JAF> <LAPAN>

<Jeff> <Lupeen> <JAF> <LAPAN>

<Jefe> <Lupean> <JAF> <LAPAN>

<Jefe> <Loupeam> <JAF> <LAPAN>

input tokens after shingle (no unigrams) filter

<The> <quick> <brown> <fox> <jumped>
<over> <the> <dog>

<The quick> <quick brown> <brown fox>
<fox jumped> <jumped over> <over the>
<the dog>

input string after keyword analysis (or not_analyzed)

The quick brown fox jumps over the lazy
dog.

<The quick brown fox jumps over the lazy
dog.>

https://github.com/elasticsearch/elasticsearch-analysis-phonetic
http://xlinux.nist.gov/dads//HTML/nysiis.html
https://github.com/elasticsearch/elasticsearch-analysis-phonetic
http://www.elasticsearch.org/guide/reference/index-modules/analysis/shingle-tokenfilter.html
http://www.elasticsearch.org/guide/reference/index-modules/analysis/shingle-tokenfilter.html
http://www.elasticsearch.org/guide/reference/index-modules/analysis/keyword-analyzer.html
http://www.elasticsearch.org/guide/reference/mapping/core-types.html
http://www.elasticsearch.org/guide/reference/index-modules/analysis/keyword-analyzer.html

Geospatial search: geohash terms

elasticsearch: geo_shape filter

Wikipedia: Geohash is "a hierarchical spatial data structure which
subdivides space into buckets of grid shape."

http://www.elasticsearch.org/guide/reference/query-dsl/geo-shape-filter.html

The story so far

Analysis converts documents to terms:

● tokenizers map a string to a sequence of tokens
● token filters transform a sequence of tokens

Thinking with terms: searches just traverse the postings
list, so cast your problems as term matching

IR engines provide:
 √ Efficient access to large collections
 √ Flexible matching
● Ranked retrieval

Ranked retrieval

Ranked retrieval

In the Boolean model, a document is either
relevant or not relevant to a particular query

It's (usually) impractical to look through all
relevant results

Ranked retrieval: for each relevant document,
compute a score with respect to the query,
and then sort documents based on that score

Ranked retrieval: field weights

title, address, body
text match

title, body text
match

body text match
only

Intuition: a document with query terms in its title (or URL) is more relevant for that query

Ranked retrieval: field weights

field weight

title 0.5

url 0.1

body 0.4

Assign weights to fields, use the Boolean model, and then
score each document:

score(q, d) = matched(q, d, field1) * weight(field1) + matched(q, d, field1) * weight(field2) + ...
 where matched(q, d, f) is 1 if the document d matched the query q in field f and 0 otherwise

score = 1 * 0.5 + 1 * 0.1 + 1 * 0.4 = 1

score = 0 * 0.5 + 0 * 0.1 + 1 * 0.4 = 0.4

query: hurricane AND sandy

Exercise: Can we implement field-specific matching using a single postings list?

Ranked retrieval: term frequency

Both documents match the query "Boston" – but the left is more relevant

Intuition: documents that mention query terms more often are more relevant for
that query

Term frequency: tf(t, d): the number of occurrences of the term t in the
document d.

Ranked retrieval:
document frequency

Many cnn.com articles contains "Boston" (6,956); fewer (356) contain "Celtics".
For the query "Boston Celtics", a document that has only "Celtics" is more
relevant than a document that has only "Boston".

Intuition: documents with rare terms from the query are more relevant

Document frequency: df(t): the number of documents that contain the term t

Ranked retrieval: tf-idf

● Term frequency, tf(t, d), suggests the importance of a term t
within a particular document d

● Document frequency, df(t), compensates for terms that
appear too often throughout the collection
○ Define inverse document frequency: idf(t) = log(N / df(t)),

where N is the number of documents in the collection
○ idf(t) is high for rare terms, low for frequent terms

● For term t in document d, tf-idf(d, t) = tf(t, d) * idf(t)
○ Highest if t occurs frequently in d and t appears in few

documents
○ Lower if t occurs rarely in d or t appears in many

documents
○ Lowest when t is in almost all documents

● Then: score(q, d) = tf-idf(term1, d) + tf-idf(term2, d) + ...

Scoring explanations

To enable, set "explain"
to true in the search
request

"neptun" appeared once
in the document and in
228 total documents:
tf=1,
df=228,
idf=1+log(3214547/(228+1))

ES: Set search_type=dfs_query_then_fetch for accurate distributed tf-idf computation

The vector space model

Let T be the set of all terms. We can represent
each document d as a vector V(d) having | T |
components:

V(d) = (tf-idf(d, term1), tf-idf(d, term2), ...)
(let tf-idf(d, t) be 0 if d does not contain t)

as a unit vector: v(d) = V(d) / ||V(d)||
(normalizes for document length)

We can use this approach for queries, also

The vector space model:
cosine similarity

cos(0º) = 1
cos(30º) = 0.866
cos(45º) = 0.707...
cos(60º) = 0.5
cos(90º) = 0

A document and a query are
just (unit) vectors, so we can
find the angle between them

Intuition:
θ = 0º if identical
θ = 90º if completely dissimilar

similarity(d, q) = ||v(d)|| ||v(q)|| cos θ = cos θ
= v(d) • v(q)

The story so far

Field weighting is a basic ranked retrieval approach
Term frequency: tf(t, d): the number of occurrences of the
term t in the document d
Document frequency: df(t): the number of documents that
contain the term t
tf-idf weighting combines these measures

IR engines provide:
 √ Efficient access to large collections
 √ Flexible matching
 √ Ranked retrieval

Further reading

topic elasticsearch implementation

Boolean model of information retrieval Filters in the Query DSL

Flexible matching Analysis
Recommended reading: Lucene in Action,
2nd Edition, chapter 4

Vector space model of information retrieval Scoring overview
Similarity details
Scoring explanations

Geospatial search geo_shape query
David Smiley's presentation

Numeric range queries NumericRangeQuery (clever!)

Recommended reading: Introduction to Information Retrieval by Manning et al., Taming Text by
Ingersoll et al.

http://www.elasticsearch.org/guide/reference/query-dsl/
http://www.elasticsearch.org/guide/reference/query-dsl/
http://www.elasticsearch.org/guide/reference/index-modules/analysis/
http://www.elasticsearch.org/guide/reference/index-modules/analysis/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
http://www.manning.com/hatcher3/
https://lucene.apache.org/core/3_6_1/scoring.html
https://lucene.apache.org/core/3_6_1/scoring.html
https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/search/Similarity.html
https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/search/Similarity.html
http://www.elasticsearch.org/guide/reference/api/search/explain.html
http://www.elasticsearch.org/guide/reference/api/search/explain.html
http://www.elasticsearch.org/guide/reference/query-dsl/geo-shape-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/geo-shape-query.html
http://www.basistech.com/pdf/events/open-source-search-conference/oss-2011-smiley-geospatial-search.pdf
http://www.basistech.com/pdf/events/open-source-search-conference/oss-2011-smiley-geospatial-search.pdf
https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/search/NumericRangeQuery.html
https://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/search/NumericRangeQuery.html
http://nlp.stanford.edu/IR-book/
http://www.manning.com/ingersoll/

Thank you

spindle.com/talks

spindle.com/jobs

alex@spindle.com, @alambert

https://spindle.com/talks
https://spindle.com/talks
https://spindle.com/jobs
https://spindle.com/jobs

